Send to

Choose Destination
Am J Physiol Cell Physiol. 2002 Oct;283(4):C1313-23.

Cell cycle-dependent expression of volume-activated chloride currents in nasopharyngeal carcinoma cells.

Author information

School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, Wales, UK.


Patch-clamping and cell image analysis techniques were used to study the expression of the volume-activated Cl(-) current, I(Cl(vol)), and regulatory volume decrease (RVD) capacity in the cell cycle in nasopharyngeal carcinoma cells (CNE-2Z). Hypotonic challenge caused CNE-2Z cells to swell and activated a Cl(-) current with a linear conductance, negligible time-dependent inactivation, and a reversal potential close to the Cl(-) equilibrium potential. The sequence of anion permeability was I(-) > Br(-) > Cl(-) > gluconate. The Cl(-) channel blockers tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), and ATP inhibited I(Cl(vol)). Synchronous cultures of cells were obtained by the mitotic shake-off technique and by a double chemical-block (thymidine and hydroxyurea) technique. The expression of I(Cl(vol)) was cell cycle dependent, being high in G(1) phase, downregulated in S phase, but increasing again in M phase. Hypotonic solution activated RVD, which was cell cycle dependent and inhibited by the Cl(-) channel blockers NPPB, tamoxifen, and ATP. The expression of I(Cl(vol)) was closely correlated with the RVD capacity in the cell cycle, suggesting a functional relationship. Inhibition of I(Cl(vol)) by NPPB (100 microM) arrested cells in G(0)/G(1). The data also suggest that expression of I(Cl(vol)) and RVD capacity are actively modulated during the cell cycle. The volume-activated Cl(-) current associated with RVD may therefore play an important role during the cell cycle progress.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center