Send to

Choose Destination
Lasers Surg Med. 2002;31(2):136-41.

Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.

Author information

Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8522, Japan.



We investigated the mechanism and characteristics of porcine myocardium tissue ablation in vitro with nanosecond 1,064- and 532-nm pulsed lasers at laser intensities up to approximately 5.0 GW/cm(2). Particular attention was paid to study the influence of the laser-induced plasma on the ablation characteristics. The applicability of these two lasers to transmyocardial laser revascularization (TMLR) was discussed.


Porcine myocardium tissue samples were irradiated with 1,064- and 532-nm, Q-switched Nd:YAG laser pulses, and the ablation depths were measured. The temporal profiles of the laser-induced optical emissions were measured with a biplanar phototube. For the ablated tissue samples, histological analysis was performed with an optical microscope and a polarization microscope.


The ablation efficiency at 1,064 nm was higher than that at 532 nm. The ablation threshold at 1,064 nm (approximately 0.8 GW/cm(2)) was lower than that at 532 nm (approximately 1.6 GW/cm(2)), in spite of the lower absorption coefficient being expected at 1,064 nm. For the 1,064-nm laser-ablated tissues, thermal damage was very limited, while damage presumably caused by the mechanical effect was observed in most of the cases. For the 1,064-nm laser ablation, the ablation threshold was equal to the threshold of the laser-induced optical emission (approximately 0.8 GW/cm(2)), while for the 532-nm laser ablation, the optical emission threshold ( approximately 2.4 GW/cm(2)) was higher than the ablation threshold.


We considered that for the 1,064-nm laser ablation, the tissue removal was achieved through a photodisruption process at laser intensities of > approximately 0.8 GW/cm(2). At laser intensities of > 3.0 GW/cm(2), however, the ablation efficiency decreased; this can be attributed to the absorption of incoming laser pulses by the plasma. For the 532-nm laser ablation, the tissue removal was achieved through a photothermal process at laser intensities of > approximately 1.6 GW/cm(2). At laser intensities of > 2.4 GW/cm(2), a photodisruption process may also contribute to the tissue removal, in addition to a photothermal process. With regard to the ablation rates, the 1,064-nm laser was more suitable for TMLR than the 532-nm laser. We concluded that the 1,064-nm Q-switched Nd:YAG laser would be a potential candidate for a laser source for TMLR because of possible fiber-based beam delivery, its compact structure, cost effectiveness, and easy maintenance. Animal trials, however, have to be carried out to evaluate the influence of the tissue damage.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center