Send to

Choose Destination
Biochemistry. 2002 Sep 10;41(36):10942-9.

Solution structure and backbone dynamics of the functional cytoplasmic subdomain of human ephrin B2, a cell-surface ligand with bidirectional signaling properties.

Author information

Biomolecular NMR Group and Mammalian Cells Genetics Group, Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2.


The cytoplasmic domain of B ephrins plays a central role in bidirectional signal transduction processes controlling pattern formation and morphogenesis, such as axon guidance, cell migration, segmentation, and angiogensis. In particular, the extremely conserved last 33-residue cytoplasmic subdomain was shown to bind to both a PDZ domain for one signaling pathway [Lu et al. (2001) Cell 105, 69-79] and an SH2 domain from an alternative signaling network [Cowan and Henkemeyer (2001) Nature 413, 174-179]. To date, no structural information is available for the cytoplasmic domain of ephrin B proteins. We report here a detailed NMR study on the structural and dynamic properties of the cytoplasmic domain of human ephrin B2. Our results reveal the following: (1) the N-terminal region of the cytoplasmic domain from residues 253 to 300 lacks the ability for structure formation and is particularly prone to aggregation; and (2) the C-terminal functional subdomain from residues 301 to 333 assumes two distinctive structural elements with residues 301-322 adopting a well-packed hairpin structure followed by a flexible C-terminal tail. Furthermore, the backbone (15)N relaxation data demonstrate that the hairpin structure has significantly limited backbone motions, indicating a high conformational stability for the folded structure. Therefore, while the flexible C-terminal tail is suitable for binding to the PDZ domain, the folded hairpin may represent a latent structure requiring phosphorylation-induced conformational changes for high-affinity interactions with the SH2 domain.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center