Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Nov 22;277(47):44677-87. Epub 2002 Aug 29.

Developmentally regulated N-terminal variants of the nuclear receptor hepatocyte nuclear factor 4alpha mediate multiple interactions through coactivator and corepressor-histone deacetylase complexes.

Author information

Unité de Génétique de la Différenciation, FRE 2364 du CNRS, Département de Biologie du Développement, Institut Pasteur, 75724 Paris Cedex 15, France.


To understand the mechanisms governing the regulation of nuclear receptor (NR) function, we compared the parameters of activation and repression of two isoforms of the orphan receptor hepatocyte nuclear factor (HNF) 4alpha. HNF4alpha7 and HNF4alpha1 differ only in their N-terminal domains, and their expression in the liver is regulated developmentally. We show that the N-terminal activation function (AF)-1 of HNF4alpha1 possesses significant activity that can be enhanced through interaction with glucocorticoid receptor-interacting protein 1 (GRIP-1) and cAMP response element-binding protein-binding protein (CBP). In striking contrast, HNF4alpha7 possesses no measurable AF-1, implying major functional differences between the isoforms. Indeed, although HNF4alpha1 and HNF4alpha7 are able to interact via AF-2 with GRIP-1, p300, and silencing mediator for retinoid and thyroid receptors (SMRT), only HNF4alpha1 interacts in a synergistic fashion with GRIP-1 and p300. Although both isoforms interact physically and functionally with SMRT, the repression of HNF4alpha7 is less robust than that of HNF4alpha1, which may be caused by an increased ability of the latter to recruit histone deacetylase (HDAC) activity to target promoters. Moreover, association of SMRT with HDACs enhanced recruitment of HNF4alpha1 but not of HNF4alpha7. These observations suggest that NR isoform-specific association with SMRT could affect activity of the SMRT complex, implying that selection of HDAC partners is a novel point of regulation for NR activity. Possible physiological consequences of the multiple interactions with these coregulators are discussed.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center