Format

Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2002 Sep 15;100(6):2102-7.

Amelioration of the macrothrombocytopenia associated with the murine Bernard-Soulier syndrome.

Author information

1
Roon Center for Arteriosclerosis and Thrombosis, Division of Experimental Hemostasis and Thrombosis, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA.

Abstract

An absent platelet glycoprotein (GP) Ib-IX receptor results in the Bernard-Soulier syndrome and is characterized by severe bleeding and the laboratory presentation of macrothrombocytopenia. Although the macrothrombocytopenic phenotype is directly linked to an absent GP Ib-IX complex, the disrupted molecular mechanisms that produce the macrothrombocytopenia are unknown. We have utilized a mouse model of the Bernard-Soulier syndrome to engineer platelets expressing an alpha-subunit of GP Ib (GP Ibalpha) in which most of the extracytoplasmic sequence has been replaced by an isolated domain of the alpha-subunit of the human interleukin-4 receptor (IL-4Ralpha). The IL-4Ralpha/GP Ibalpha fusion is membrane expressed in Chinese hamster ovary (CHO) cells, and its expression is facilitated by the presence of human GP IX and the beta-subunit of GP Ib. Transgenic animals expressing a chimeric receptor were generated and bred into the murine Bernard-Soulier syndrome-producing animals devoid of mouse GP Ibalpha but expressing the IL-4Ralpha/GP Ibalpha fusion sequence. The characterization of these mice revealed a 2-fold increase in circulating platelet count and a 50% reduction in platelet size when compared with platelets from the mouse model of the Bernard-Soulier syndrome. Immunoprecipitation confirmed that the IL-4Ralpha/GP Ibalpha subunit interacts with filamin-1 and 14-3-3zeta, known binding proteins to the GP Ibalpha cytoplasmic tail. Mice expressing the chimeric receptor retain a severe bleeding phenotype, confirming a critical role for the GP Ibalpha extracytoplasmic domain in hemostasis. These results provide in vivo insights into the structural elements of the GP Ibalpha subunit that contribute to normal megakaryocyte maturation and thrombopoiesis.

PMID:
12200373
DOI:
10.1182/blood-2002-03-0997
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center