Send to

Choose Destination
Anal Chem. 2002 Aug 15;74(16):4011-9.

Imaging of freeze-fractured cells with in situ fluorescence and time-of-flight secondary ion mass spectrometry.

Author information

Department of Chemistry, Pennsylvania State University, University Park 16802, USA.


Bioanalytical imaging techniques have been employed to investigate cellular composition at the single-cell and subcellular regimes. Four imaging modes have been performed sequentially in situ to demonstrate the utility of a more integrated approach to imaging cells. The combination of bright-field, scanning ion, and fluorescence microscopy complements TOF-SIMS imaging of native biomolecules. Bright-field microscopy provides a blurred visualization of cells in frozen-hydrated samples, while scanning ion imaging provides a morphological view of freeze-fractured cells after TOF-SIMS analysis is completed. With the use of selective fluorescent labels, fluorescence microscopy allows single mammalian cells to be located in the complex ice matrix of freeze-fractured samples, a task that has not been routine with either bright-field or TOF-SIMS. A fluorescent label, DiI (m/z 834), that does not interfere with the mass spectra of membrane phosphatidylcholine, has been chosen for fluorescence and TOF-SIMS imaging of membrane phospholipids. In this paper, in situ fluorescence microscopy allows the distinction of single cells from ice and other sample debris, previously not possible with bright-field or scanning ion imaging. Once cells are located, TOF-SIMS imaging reveals the localization of membrane lipids, even in the membrane of a single 15-microm rat pheochromocytoma cell. The utility of mapping lipids in the membranes of single cells using this integrated approach will provide more understanding of the functional role of specific lipids in functions of cellular membranes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center