Format

Send to

Choose Destination
Br J Cancer. 2002 Aug 27;87(5):555-61.

Retinoids cause apoptosis in pancreatic cancer cells via activation of RAR-gamma and altered expression of Bcl-2/Bax.

Author information

1
Department of Oncology, Gastroenterology, Endocrinology and Metabolism, St George's Hospital Medical School, London SW17 ORE, UK.

Abstract

All-trans-retinoic acid and 9-cis-retinoic acid have been reported to have inhibitory effects on pancreatic adenocarcinoma cells and we have shown that this is partly due to induction of apoptosis. In this study, the mechanisms whereby 9-cis-retinoic acid induces apoptosis in these cells were investigated. An involvement of the Bcl-2 family of proteins was shown, such that 9-cis-retinoic acid causes a decrease in the Bcl-2/Bax ratio. Overexpression of Bcl-2 also resulted in inhibition of apoptosis induced by 9-cis-retinoic acid. Furthermore, two broad-range caspase inhibitors blocked DNA fragmentation induced by 9-cis-retinoic acid, but had no effect on viability defined by mitochondrial activity. Using synthetic retinoids, which bind selectively to specific retinoic acid receptor subtypes, we further established that activation of retinoic acid receptor-gamma is essential for induction of apoptosis. Only pan-retinoic acid receptor and retinoic acid receptor-gamma selective agonists reduced viability and a cell line expressing very low levels of retinoic acid receptor-gamma is resistant to the effects of 9-cis-retinoic acid. A retinoic acid receptor-beta/gamma selective antagonist also suppressed the cytotoxic effects of 9-cis-retinoic acid in a dose-dependent manner. This study provides important insight into the mechanisms involved in suppression of pancreatic tumour cell growth by retinoids. Our results encourage further work evaluating the clinical use of receptor subtype selective retinoids in pancreatic carcinoma.

PMID:
12189556
PMCID:
PMC2376147
DOI:
10.1038/sj.bjc.6600496
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances

Publication type

MeSH terms

Substances

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center