Format

Send to

Choose Destination
Genome. 2002 Aug;45(4):652-60.

Allelic diversity of simple sequence repeats among elite inbred lines of cultivated sunflower.

Author information

1
Department of Crop and Soil Science, Oregon State University, Corvallis 97331, USA.

Abstract

Simple sequence repeat (SSR) markers were developed for cultivated sunflower (Helianthus annuus L.) from the DNA sequences of 970 clones isolated from genomic DNA libraries enriched for (CA)n,, (CT)n, (CAA)n, (CATA)n, or (GATA)n. The clones harbored 632 SSRs, of which 259 were unique. SSR markers were developed for 130 unique SSRs by designing and testing primers for 171 unique SSRs. Of the total, 74 SSR markers were polymorphic when screened for length polymorphisms among 16 elite inbred lines. The mean number of alleles per locus was 3.7 for dinucleotide, 3.6 for trinucleotide, and 9.5 for tetranucleotide repeats and the mean polymorphic information content (PIC) scores were 0.53 for dinucleotide, 0.53 for trinucleotide, and 0.83 for tetranucleotide repeats. Cluster analyses uncovered patterns of genetic diversity concordant with patterns produced by RFLP fingerprinting. SSRs were found to be slightly more polymorphic than RFLPs. Several individual SSRs were significantly more polymorphic than RFLP and other DNA markers in sunflower (20% of the polymorphic SSR markers had PIC scores ranging from 0.70 to 0.93). The newly developed SSRs greatly increase the supply of sequence-based DNA markers for DNA fingerprinting, genetic mapping, and molecular breeding in sunflower; however, several hundred additional SSR markers are needed to routinely construct complete genetic maps and saturate the genome.

PMID:
12175068
DOI:
10.1139/g02-025
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center