Send to

Choose Destination
See comment in PubMed Commons below

Prediction of joint moments using a neural network model of muscle activations from EMG signals.

Author information

  • 1Center for Biomedical Engineering Research, University of Delaware, Newark 19716, USA.


Because the relationship between electromyographic (EMG) signals and muscle activations remains unpredictable, a new way to determine muscle activations from EMG signals by using a neural network is proposed and realized. Using a neural network to predict the muscle activations from EMG signals avoids establishing a complex mathematical model to express the muscle activation dynamics. The feed-forward neural network model of muscle activations applied here is composed of four layers and uses an adjusted back-propagation training algorithm. In this study, the basic back-propagation algorithm was not applicable, because muscle activation could not be measured, and hence the error between predicted activation and the real activation was not available. Thus, an adjusted back-propagation algorithm was developed. Joint torque at the elbow was calculated from the EMG signals of ten flexor and extensor muscles, using the neural network result of estimated activation of the muscles. Once muscle activations were obtained, Hill-type models were used to estimate muscle force. A musculoskeletal geometry model was then used to obtain moment arms, from which joint moments were determined and compared with measured values. The results show that this neural network model can be used to represent the relationship between EMG signals and joint moments well.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Support Center