Send to

Choose Destination
See comment in PubMed Commons below
FEMS Microbiol Lett. 2002 Aug 6;213(2):141-7.

Molecular analysis of ancient microbial infections.

Author information

  • 1Division of Paleopathology, Institute of Pathology, Academic Teaching Hospital M√ľnchen-Bogenhausen, Engelschalkingerstrasse 77, Germany.


The detection of ancient microbial DNA offers a new approach for the study of infectious diseases, their occurrence, frequency and host-pathogen interaction in historic times and populations. Moreover, data obtained from skeletal and mummified tissue may represent an important completion of contemporary phylogenetic analyses of pathogens. In the last few years, a variety of bacterial, protozoal and viral infections have been detected in ancient tissue samples by amplification and characterization of specific DNA fragments. This holds particularly true for the identification of the Mycobacterium tuberculosis complex, which seems to be more robust than other microbes due to its waxy, hydrophobic and lipid-rich cell wall. These observations provided useful information about the occurrence, but also the frequency of tuberculosis in former populations. Moreover, these studies suggest new evolutionary models and indicate the route of transmission between human and animals. Until now, other pathogens, such as Mycobacterium leprae, Yersinia pestis, Plasmodium falciparum and others, have occasionally been identified - mostly in single case studies or small sample sizes - as well, although much less information is available on these pathogens in ancient settings. The main reason therefore seems to be the degradation and modification of ancient DNA by progressive oxidative damage. Furthermore, the constant risk of contamination by recent DNA forces to take time and cost effective measures and renders the analysis of ancient microbes difficult. Nevertheless, the study of microbial ancient DNA significantly contributes to the understanding of transmission and spread of infectious diseases, and potentially to the evolution and phylogenetic pathways of pathogens.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center