Send to

Choose Destination
Korean J Intern Med. 2002 Jun;17(2):94-9.

The resistance mechanisms of b-lactam antimicrobials in clinical isolates of Acinetobacter baumannii.

Author information

Dept. of Int. Medicine, Dankook University, College of Medicine, San 29, Anseo-dong, Chonan, Chungnam, Korea 330-715.



Despite increasing importance of Acinetobacter baumannii in nosocomial infections and rapid development of multi-antimicrobial resistance in this strain, the resistance mechanisms of beta-lactam antimicrobials in A. baumannii were not clearly defined. In order to observe the resistance mechanisms against beta-lactams and carbapenem, we characterized the production of beta-lactamases and outermembrane protein (OMP) profiles for the 44 clinical isolates of A. baumannii.


The MICs of antimicrobials were determined by agar dilution test. The secondary beta-lactamases were characterized by isoelectric focusing, polymerase chain reactions and nucleotide sequencing, and the production of chromosomal beta-lactamases was quantitated by spectrophotometric method. For two strains with an elevated MIC of carbapenem, outermembrane protein (OMP) profile was analyzed by ultracentrifugation of the sonicated bacteral cells and SDS-PAGE.


Twenty two or 4 of 44 strains produced TEM-1-like beta-lactamase or PER-1 extended-spectrum beta-lactamase, respectively. However, when we analyzed the MICs of several beta-lactams with the beta-lactamase production, the resistance level of beta-lactam was mainly determined by the production of chromosomal beta-lactamase, not by the secondary beta-lactamases in the clinical isolates of A. baumannii. In two strains with an elevated MIC of imipenem, a decrease or loss of about 35 kDa and 22 kDa proteins in OMP was observed, which suggested that the change of OMP played a role in carbapenem resistance.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Publishing M2Community Icon for PubMed Central
Loading ...
Support Center