Send to

Choose Destination
J Neurophysiol. 2002 Aug;88(2):565-78.

Age-related alterations in the neural coding of envelope periodicities.

Author information

Department of Surgery, Otolaryngology Division, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642-8629, USA.


This research was guided by the working hypothesis that the aging auditory system progressively loses its ability to process rapid acoustic transients efficiently, and in elderly listeners, this results in difficulties in speech perception. Neural correlates of age-related deficits in temporal processing were investigated by recording from inferior colliculus (IC) neurons from young adult and old CBA mice. Single-unit responses were recorded to sinusoidally amplitude-modulated (SAM) noise carriers, presented at 65-80 dB SPL, having modulation frequencies (MFs) that ranged from 10 to 800 Hz. Because phasic-type temporal response patterns dominate responses to tone and noise in mammalian IC, we limited our analyses to only phasic units. Modulation transfer functions (MTF) for both rate (rMTF) and synchronization (sMTF) measures were used to derive respective best modulation frequencies (rBMF and sBMF). The main age-related finding was that there was an overall increase in response rate to SAM noise carriers and a decrease in the median upper cutoff frequency in units from old mice. At rBMF, the median spike count from units from old animals was 1.63 times greater, and at the sBMF, the median spike count was 2.29 times greater than the young adult sample. We explored whether the increase in driven activity was due to a change in the transient (first cycle response) or periodic (remaining response) component of the response to SAM noise. Median spike counts of the transient component decreased with increasing MF for both young adult and old units, with median counts consistently greater in the old sample as compared with young. Median spike counts for the periodic response remained relatively constant as a function of MF; however, there was a significantly greater (3 times) response for older units in a restricted range of MFs. The greater median spike counts found for the transient and periodic response was also evident when we analyzed the cycle-by-cycle response. The magnitude of the differences between the young adult and the old spike median responses was greatest at low MFs and then declined as MF increased. Finally, the young adult distribution of rBMFs extends to higher MFs than the old, with 36.0% of units having rBMFs >100 Hz as compared with only 12.5% of the old unit sample. We postulate that this age-related difference in rate coding of SAM noise carriers is consistent with a loss, or imbalance, of excitatory and inhibitory neural mechanisms known to shape encoding of envelope periodicities in the IC.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center