Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2002 Aug;161(2):693-703.

Impaired hair follicle morphogenesis and cycling with abnormal epidermal differentiation in nackt mice, a cathepsin L-deficient mutation.

Author information

1
Science Park-Research Division, The University of Texas M. D. Anderson Cancer Center, Smithville, Texas 78957, USA. fbenavides@sprd1.mdacc.tmc.edu

Abstract

We previously described an autosomal-recessive mutation named nackt (nkt) exhibiting partial alopecia associated with CD4(+) T-cell deficiency. Also, we recently reported that nkt (now Ctsl(nkt)) comprises a deletion in the cathepsin L (Ctsl) gene. Another recent study reported that Ctsl knockout mice have CD4(+) T-cell deficiency and periodic shedding of hair, which recapitulate the nkt mutation and the old furless (fs) mutation. The current study focuses on the dermatological aspects of the nkt mutation. Careful histological analysis of skin development of homozygous nkt mice revealed a delayed hair follicle morphogenesis and late onset of the first catagen stage. The skin of Ctsl(nkt)/Ctsl(nkt) mice showed mild epidermal hyperplasia and hyperkeratosis, severe hyperplasia of the sebaceous glands, and structural alterations of hair follicles. Epidermal differentiation seems to be affected in nkt skin, with overexpression of involucrin and profilaggrin/filaggrin along with focal areas of keratin 6 expression in the interfollicular epidermis. Severe epidermal hyperplasia, acanthosis, orthokeratosis, and hyperkeratosis were only observed in mice maintained in nonpathogen-free environments. The analysis of Rag2-/- Ctsl(nkt)/Ctsl(nkt) double-mutant mice indicates that the skin defect remains under the absence of T and B cells. This animal model provides in vivo evidence that cysteine protease cathepsin L plays a critical role in hair follicle morphogenesis and cycling, as well as epidermal differentiation.

PMID:
12163394
PMCID:
PMC1850757
DOI:
10.1016/S0002-9440(10)64225-3
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center