Send to

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2002 Aug 1;41(22):4712-21.

Multiple-fiber probe design for fluorescence spectroscopy in tissue.

Author information

  • 1Wellman Laboratories of Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.


The fiber-optic probe is an essential component of many quantitative fluorescence spectroscopy systems, enabling delivery of excitation light and collection of remitted fluorescence in a wide variety of clinical and laboratory situations. However, there is little information available on the role of illumination--collection geometry to guide the design of these components. Therefore we used a Monte Carlo model to investigate the effect of multifiber probe design parameters--numerical aperture, fiber diameter, source--collection fiber separation distance, and fiber-tissue spacer thickness--on light propagation and the origin of detected fluorescence. An excitation wavelength of 400 nm and an emission wavelength of 630 nm were simulated. Noteworthy effects included an increase in axial selectivity with decreasing fiber size and a transition with increasing fiber-tissue spacer size from a subsurface peak in fluorophore sensitivity to a nearly monotonic decrease typical of single-fiber probes. We provide theoretical evidence that probe design strongly affects tissue interrogation. Therefore application-specific customization of probe design may lead to improvements in the efficacy of fluorescence-based diagnostic devices.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center