Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11293-8. Epub 2002 Jul 31.

Identification of oncogenes collaborating with p27Kip1 loss by insertional mutagenesis and high-throughput insertion site analysis.

Author information

1
Division of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.

Abstract

The p27(Kip1) protein is a cyclin-dependent kinase inhibitor that blocks cell division in response to antimitogenic cues. p27 expression is reduced in many human cancers, and p27 functions as a tumor suppressor that exhibits haploinsufficiency in mice. Despite the well characterized role of p27 as a cyclin-dependent kinase inhibitor, its mechanism of tumor suppression is unknown. We used Moloney murine leukemia virus to induce lymphomas in p27+/+ and p27-/- mice and observed that lymphomagenesis was accelerated in the p27-/- animals. To identify candidate oncogenes that collaborate with p27 loss, we used a high-throughput strategy to sequence 277 viral insertion sites derived from two distinct sets of p27-/- lymphomas and determined their chromosomal location by comparison with the Celera and public (Ensembl) mouse genome databases. This analysis identified a remarkable number of putative protooncogenes in these lymphomas, which included loci that were novel as well as those that were overrepresented in p27-/- tumors. We found that Myc activations occurred more frequently in p27-/- lymphomas than in p27+/+ tumors. We also characterized insertions within two novel loci: (i) the Jun dimerization protein 2 gene (Jundp2), and (ii) an X-linked locus termed Xpcl1. Each of the loci that we found to be frequently involved in p27-/- lymphomas represents a candidate oncogene collaborating with p27 loss. This study illustrates the power of high-throughput insertion site analysis in cancer gene discovery.

PMID:
12151601
PMCID:
PMC123250
DOI:
10.1073/pnas.162356099
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Secondary source ID, Grant support

Publication types

MeSH terms

Substances

Secondary source ID

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center