Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2002 Aug 15;100(4):1354-61.

Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells.

Author information

  • 1Research Department and the Oncology Department, Cantonal Hospital St Gallen, Switzerland.


Dendritic cells (DCs) are potent antigen-presenting cells that are able to initiate and modulate immune responses and are hence exploited as cellular vaccines for immunotherapy. Their capacity to migrate from peripheral tissues to the T-cell areas of draining lymph nodes is crucial for the priming of T lymphocytes. In this study, we investigated how the maturation of human monocyte-derived DCs (MoDCs) by several different stimuli under serum-free conditions affected their T-cell stimulatory function, cytokine secretion, and migratory behavior. Surprisingly, we found that for all maturation stimuli tested, the addition of prostaglandin E2 (PGE2) was required for effective migration of MoDCs toward the lymph node-derived chemokines CCL19 (EBI1 ligand chemokine/macrophage inflammatory protein--3beta) and CCL21 (secondary lymphoid tissue chemokine [SLC]/6Ckine). Costimulation with PGE2 enhanced the expression of the CCL19/CCL21 receptor CCR7 on the cell surface of MoDCs when they were matured with soluble CD40 ligand or proinflammatory cytokines, but did not affect CCR7 expression of polyI:C-stimulated MoDCs. The effects of PGE2 on MoDCs were mediated through increased cyclic adenosine monophosphate by 2 of the known PGE2 receptors, EP2 and EP4, which are expressed and down-regulated after PGE2 binding in these cells. In conclusion, our results suggest that signals provided by the proinflammatory mediator PGE2 are crucial for MoDCs to acquire potent T-helper cell stimulatory capacity and substantial chemotactic responsiveness to lymph node-derived chemokines. This is a new and important parameter for the preparation of MoDCs as cellular vaccines in tumor immunotherapy. (Blood. 2002;100:1354-1361)

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center