Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Oct 11;277(41):38168-78. Epub 2002 Jul 24.

IKK beta and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappa B activation in both primary and intestinal epithelial cell lines.

Author information

1
Department of Medicine and the Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina 27599-7080, USA.

Abstract

Pathogenic and enteroinvasive bacteria have been shown to trigger the I kappa B/NF-kappa B transcriptional system and proinflammatory gene expression in epithelial cells. In this study, we investigated the molecular mechanism of the commensal Gram-negative Bacteroides vulgatus-induced NF-kappa B signal transduction in intestinal epithelial cells (IEC). We report that B. vulgatus induced interleukin-1 receptor-associated kinase-1 degradation, I kappa B alpha phosphorylation/degradation, RelA and Akt phosphorylation, as well as NF-kappa B DNA binding and NF-kappa B transcriptional activity in rat non-transformed IEC-6 cells. B. vulgatus- but not interleukin-1 beta-mediated NF-kappa B transcriptional activity was inhibited by dominant negative (dn) toll-like receptor 4. Of importance, B. vulgatus induced I kappa B alpha phosphorylation/degradation and IKK alpha/beta and RelA phosphorylation in primary IEC derived from germ-free or mono-associated HLA-B27 transgenic and wild type rats, demonstrating the physiological relevance of non-pathogenic bacterial signaling in IEC. Adenoviral delivery of dn IKK beta or treatment with wortmannin inhibited B. vulgatus-induced endogenous RelA Ser-536 and GST-p65TAD (Ser-529/Ser-536) phosphorylation as well as NF-kappa B transcriptional activity in IEC-6 cells, suggesting a critical role of IKK beta and phosphatidylinositol 3-kinase/Akt in bacteria-induced RelA phosphorylation and NF-kappa B activation. Interestingly, B. vulgatus-induced I kappa B alpha degradation and NF-kappa B transcriptional activity in IEC transwell cultures were inhibited in the presence of lymphocytes. We propose that non-pathogenic B. vulgatus activates the NF-kappa B signaling pathway through both I kappa B degradation and RelA phosphorylation but that immune cells mediate tolerance of IEC to this commensal bacteria.

PMID:
12140289
DOI:
10.1074/jbc.M205737200
[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center