Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2002 Jul 22;158(2):331-44. Epub 2002 Jul 22.

A developmental conundrum: a stabilized form of beta-catenin lacking the transcriptional activation domain triggers features of hair cell fate in epidermal cells and epidermal cell fate in hair follicle cells.

Author information

  • 1Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

Abstract

Wnt signaling orchestrates morphogenetic processes in which changes in gene expression are associated with dramatic changes in cell organization within developing tissue/organs. Upon signaling, excess beta-catenin not utilized at cell-cell junctions becomes stabilized, where it can provide the transcriptional activating domain for Lef/Tcf DNA binding proteins. In skin epithelium, forced stabilization of beta-catenin in epidermis promotes hair follicle morphogenesis, whereas conditional removal of beta-catenin in hair progenitor cells specifies an epidermal fate. We now report that a single protein, a stabilized version of beta-catenin lacking the COOH-terminal transactivation domain, acts in epidermis to promote hair fates and in hair cells to promote epidermal fate. This reveals fundamental differences in ways that epidermal and hair cells naturally respond to beta-catenin signaling. In exploring the phenotype, we uncovered mechanistic insights into the complexities of Lef1/Tcf/beta-catenin signaling. Importantly, how a cell will respond to the transgene product, where it will be localized, and whether it can lead to activation of endogenous beta-catenin/Tcf/Lef complexes is specifically tailored to skin stem cells, their particular lineage and their relative stage of differentiation. Finally, by varying the level of beta-catenin signaling during a cell fate program, the skin cell appears to be pliable, switching fates multiple times.

PMID:
12135986
PMCID:
PMC2173126
DOI:
10.1083/jcb.200204134
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center