Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Pharmacol. 2002 Aug;62(2):225-33.

Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons.

Author information

1
Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, Quebec, Canada.

Abstract

Insulin-like growth factor-1 (IGF-1) is a trophic factor promoting cell survival by activating phosphatidylinositol 3-kinase (PI3K)/Akt kinase pathway. FKHRL1, a member of the Forkhead family of transcription factors possibly involved in cell cycle and apoptosis, is a downstream target of Akt in fibroblasts. However, very little information is available concerning neurons. We report herein that IGF-1 rapidly induced the phosphorylation of endogenous FKHRL1 in hippocampal neurons. The PI3K/Akt kinase pathway mediates this action, as evidenced by the use of different kinase inhibitors, the expression of constitutively active Akt, and in vitro kinase assay. IGF-1 blocked the nuclear translocation of FKHRL1 in hippocampal neurons and promoted survival in parallel to the phosphorylation of Akt and FKHRL1. Similarly, the expression of constitutively active Akt in PC-12 cells increased the phosphorylation of FKHRL1 and promoted survival, whereas the expression of kinase dead Akt attenuated IGF-1-mediated survival of PC-12 cells. Moreover, the overexpression of wild-type FKHRL1 and its nonphosphorylated mutant induced apoptosis in cultured hippocampal neurons. Interestingly, IGF-1 and PI3-kinase inhibitors have no significant effect on the cell cycle inhibitor p27kip1 in hippocampal neurons. This finding suggests that in contrast to fibroblasts, FKHRL1 is unlikely to be involved in cell cycle in neurons. Taken together, these data reveal that endogenous FKHRL1 is a downstream substrate of PI3K/Akt in IGF-1 receptor signaling in hippocampal neurons and suggest that the phosphorylation of this transcription factor may play an important role in the neuronal survival properties of IGF-1.

PMID:
12130673
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center