Format

Send to

Choose Destination
See comment in PubMed Commons below

Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus.

Author information

1
Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0202, La Jolla, USA. cwillett@ucsd.edu

Abstract

Diverse organisms regulate concentrations of intracellular organic osmolytes in response to changes in environmental salinity or desiccation. In marine crustaceans, accumulation of high concentrations of proline is a dominant component of response to hyperosmotic stress. In the euryhaline copepod Tigriopus californicus, synthesis of proline from its metabolic precursor glutamate is tightly regulated by changes in environmental salinity. Here, for the first time in a marine invertebrate, the genes responsible for this pathway have been cloned and characterized. The two proteins display the sequence features of homologous enzymes identified from other eukaryotes. One of the cloned genes, delta1-pyrroline-5-carboxylase reductase (P5CR), is demonstrated to have the reductase enzyme activity when expressed in proline-auxotroph bacteria, while the second, delta1-pyrroline-5-carboxylase synthase (P5CS), does not rescue proline-auxotroph bacteria. In contrast to results from higher plants, neither levels of P5CS nor P5CR mRNAs increase in response to salinity stress in T. californicus. Hence, regulation of proline synthesis during osmotic stress in T. californicus is likely mediated by some form of post-transcriptional regulation of either P5CS or P5CR. Understanding the regulation this pathway may elucidate the mechanisms limiting the salinity ranges of marine taxa.

PMID:
12128060
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center