Send to

Choose Destination
Brain Res Bull. 2002 Jun;58(2):149-60.

Withdrawal from dependence upon butorphanol uniquely increases kappa(1)-opioid receptor binding in the rat brain.

Author information

Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA.


Changes in kappa(1)-opioid receptor binding have been implicated in the development of dependence upon and withdrawal from butorphanol. Autoradiographic characterization of binding for brain kappa(1)-([3H]CI-977), mu-([3H]DAMGO), and delta-([3H]DPDPE) opioid receptors was performed in rats undergoing naloxone-precipitated withdrawal from dependence upon butorphanol or morphine. Dependence was induced by a 72h i.c.v. infusion with either butorphanol or morphine (26nmol/microl/h). Withdrawal was subsequently precipitated by i.c.v. challenge with naloxone (48 nmol/5 microl/rat), administered 2h following cessation of butorphanol or morphine infusion. During withdrawal from butorphanol, but not morphine, kappa(1)-opioid receptor binding was increased significantly in the frontal cortex, posterior basolateral amygdaloid nucleus, dorsomedial hypothalamus, hippocampus, posterior paraventricular thalamic nucleus, ventral tegmental area and locus coeruleus. In contrast, mu-opioid receptor binding decreased in these brain regions in naloxone-precipitated withdrawal from morphine, but not butorphanol, while binding for delta-opioid receptors was altered in both withdrawal groups. The brain kappa(1)-opioid receptor appears to be more directly involved in the development of physical dependence upon, and the expression of withdrawal from, butorphanol, as opposed to the prototypical opioid analgesic, morphine.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center