Format

Send to

Choose Destination
Neuron. 2002 Jul 3;35(1):25-38.

Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14.

Author information

1
Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis 63110, USA.

Abstract

Fibroblast growth factor 14 (FGF14) belongs to a distinct subclass of FGFs that is expressed in the developing and adult CNS. We disrupted the Fgf14 gene and introduced an Fgf14(N-beta-Gal) allele that abolished Fgf14 expression and generated a fusion protein (FGF14N-beta-gal) containing the first exon of FGF14 and beta-galactosidase. Fgf14-deficient mice were viable, fertile, and anatomically normal, but developed ataxia and a paroxysmal hyperkinetic movement disorder. Neuropharmacological studies showed that Fgf14-deficient mice have reduced responses to dopamine agonists. The paroxysmal hyperkinetic movement disorder phenocopies a form of dystonia, a disease often associated with dysfunction of the putamen. Strikingly, the FGF14N-beta-gal chimeric protein was efficiently transported into neuronal processes in the basal ganglia and cerebellum. Together, these studies identify a novel function for FGF14 in neuronal signaling and implicate FGF14 in axonal trafficking and synaptosomal function.

PMID:
12123606
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center