Send to

Choose Destination
Mol Microbiol. 2002 Jul;45(2):277-88.

StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor.

Author information

Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA.


Escherichia coli O157:H7 causes diarrhoea, haemorrhagic colitis, and the haemolytic uraemic syndrome. We have identified a protein of previously unknown function encoded on the pO157 virulence plasmid of E. coli O157:H7, which is the first described protease that specifically cleaves C1 esterase inhibitor (C1-INH), a member of the serine protease inhibitor family. The protein, named StcE for secreted protease of C1 esterase inhibitor from EHEC (formerly Tagn), cleaves C1-INH to produce (unique) approximately 60-65 kDa fragments. StcE does not digest other serine protease inhibitors, extracellular matrix proteins or universal protease targets. We also observed that StcE causes the aggregation of cultured human T cells but not macrophage-like cells or B cells. Substitution of aspartic acid for glutamic acid at StcE position 435 within the consensus metalloprotease active site ablates its abilities to digest C1-INH and to aggregate T cells. StcE is secreted by the etp type II secretion pathway encoded on pO157, and extracellular StcE levels are positively regulated by the LEE-encoded regulator, Ler. StcE antigen and activity were detected in the faeces of a child with an E. coli O157:H7 infection, demonstrating the expression of StcE during human disease. Cleavage of C1-INH by StcE could plausibly cause localized pro-inflammatory and coagulation responses resulting in tissue damage, intestinal oedema and thrombotic abnormalities.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center