Format

Send to

Choose Destination
See comment in PubMed Commons below
J Clin Invest. 2002 Jul;110(2):271-9.

The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy.

Author information

1
Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103, USA. Sadoshju@umdnj.edu

Abstract

Mitogen-activated protein kinase kinase kinase (MEKK1) mediates activation of c-Jun NH(2)-terminal kinase (JNK). Although previous studies using cultured cardiac myocytes have suggested that the MEKK1-JNK pathway plays a key role in hypertrophy and apoptosis, its effects in cardiac hypertrophy and apoptosis are not fully understood in adult animals in vivo. We examined the role of the MEKK1-JNK pathway in pressure-overloaded hearts by using mice deficient in MEKK1. We found that transverse aortic banding significantly increased JNK activity in Mekk1(+/+) but not Mekk1(-/-) mice, indicating that MEKK1 mediates JNK activation by pressure overload. Nevertheless, pressure overload caused significant levels of cardiac hypertrophy and expression of atrial natriuretic factor in Mekk1(-/-) animals, which showed higher mortality and lung/body weight ratio than were seen in controls. Fourteen days after banding, Mekk1(-/-) hearts were dilated, and their left ventricular ejection fraction was low. Pressure overload caused elevated levels of apoptosis and inflammatory lesions in these mice and produced a smaller increase in TGF-beta and TNF-alpha expression than occurred in wild-type controls. Thus, MEKK1 appears to be required for pressure overload-induced JNK activation and cytokine upregulation but to be dispensable for pressure overload-induced cardiac hypertrophy. MEKK1 also prevents apoptosis and inflammation, thereby protecting against heart failure and sudden death following cardiac pressure overload.

PMID:
12122119
PMCID:
PMC151048
DOI:
10.1172/JCI14938
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Journal of Clinical Investigation Icon for PubMed Central
    Loading ...
    Support Center