Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9771-6. Epub 2002 Jul 15.

Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties.

Author information

Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.


Dissociation of human beta-2-microglobulin (beta(2)m) from the heavy chain of the class I HLA complex is a critical first step in the formation of amyloid fibrils from this protein. As a consequence of renal failure, the concentration of circulating monomeric beta(2)m increases, ultimately leading to deposition of the protein into amyloid fibrils and development of the disorder, dialysis-related amyloidosis. Here we present the crystal structure of a monomeric form of human beta(2)m determined at 1.8-A resolution that reveals remarkable structural changes relative to the HLA-bound protein. These involve the restructuring of a beta bulge that separates two short beta strands to form a new six-residue beta strand at one edge of this beta sandwich protein. These structural changes remove key features proposed to have evolved to protect beta sheet proteins from aggregation [Richardson, J. & Richardson, D. (2002) Proc. Natl. Acad. Sci. USA 99, 2754-2759] and replaces them with an aggregation-competent surface. In combination with solution studies using (1)H NMR, we show that the crystal structure presented here represents a rare species in solution that could provide important clues about the mechanism of amyloid formation from the normally highly soluble native protein.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center