Send to

Choose Destination
See comment in PubMed Commons below
Pharmacol Biochem Behav. 2002 Sep;73(2):299-306.

NMDA-induced phosphorylation and regulation of mGluR5.

Author information

Ferring Research Institute Inc., 3550 General Atomics Court, Building 2, Room 443, San Diego, CA 92121, USA.


Glutamate regulates neuronal function by acting on ionotropic receptors such as the N-methyl-D-aspartate (NMDA) receptor and metabotropic receptors (mGluRs). We have previously shown that low concentrations of NMDA are able to significantly potentiate mGluR5 responses via activation of a protein phosphatase and reversal of phosphorylation-induced desensitization. While low concentrations of NMDA are able to potentiate mGluR5 responses, higher concentrations of NMDA are actually inhibitory. In this report, we show that NMDA receptors and mGluR5 are highly colocalized in cortical regions. We also show that in voltage-clamp recordings obtained from Xenopus oocytes expressing mGluR5 and NMDA receptors, high concentrations of NMDA (50-100 microM) that elicited large currents (>400 nA) caused an inhibition of mGluR5 currents. Additionally, agonist-induced phosphoinositide hydrolysis presumably mediated by activation of mGluR5, is inhibited by NMDA (30 microM and above). Additional data presented in this report suggest that the inhibitory effect of NMDA is caused by phosphorylation of mGluR5 at protein kinase C (PKC) sites since NMDA induces phosphorylation of the receptor as measured in a back phosphorylation assay.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center