Send to

Choose Destination
See comment in PubMed Commons below
Hear Res. 2002 May;167(1-2):122-35.

The alpha9alpha10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations.

Author information

  • 1Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (CONICET-UBA), Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina.


The native cholinergic receptor that mediates synaptic transmission between olivocochlear fibers and outer hair cells of the cochlea is permeable to Ca(2+) and is thought to be composed of both the alpha 9 and the alpha 10 cholinergic nicotinic subunits. The aim of the present work was to study the permeability of the recombinant alpha 9 alpha 10 nicotinic acetylcholine receptor to Ca(2+), Ba(2+) and Mg(2+) and its modulation by these divalent cations. Experiments were performed, by the two-electrode voltage-clamp technique, in Xenopus laevis oocytes injected with alpha 9 and alpha 10 cRNA. The relative divalent to monovalent cation permeability was high ( approximately 10) for Ca(2+), Ba(2+) and Mg(2+). Currents evoked by acetylcholine (ACh) were potentiated by either Ca(2+) or Ba(2+) up to 500 microM but were blocked by higher concentrations of these cations. Potentiation by Ca(2+) was voltage-independent, whereas blockage was stronger at hyperpolarized than at depolarized potentials. Mg(2+) did not potentiate but it blocked ACh-evoked currents (IC(50)=0.38 mM). In the absence of Ca(2+), the EC(50) for ACh was higher (48 microM) than that obtained with 1.8 mM Ca(2+) (14.3 microM), suggesting that potentiation by Ca(2+) involves changes in the apparent affinity of the alpha 9 alpha 10 receptor for ACh.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center