Send to

Choose Destination
See comment in PubMed Commons below
Hear Res. 2002 Jun;168(1-2):196-207.

Brief and short-term corticofugal modulation of acoustic signal processing in the bat midbrain.

Author information

Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.


This article reviews our recent studies of brief and short-term corticofugal modulation of signal processing in the central nucleus of the inferior colliculus (ICc) by electrical stimulation in the primary auditory cortex (AC). When cortical electrical stimulation was synchronized with an acoustic stimulus, auditory responses of ICc neurons were either inhibited or facilitated and the modulative effect typically vanished within 5-10 s after the stimulation. When cortical electrical stimulation synchronized with an acoustic stimulus was repetitively delivered for 30 min, corticofugal modulation of collicular responses typically persisted up to 40 min after the stimulation. In the frequency domain, cortical electrical stimulation decreased the excitatory frequency tuning curves (FTCs) and asymmetrically increased the lateral inhibitory FTCs of corticofugally inhibited ICc neurons but produced the opposite effect on corticofugally facilitated ICc neurons. Cortical electrical stimulation facilitated auditory responses of neurons in the external nucleus of the inferior colliculus (ICx) while electrical stimulation in the ICx decreased auditory responses of ICc neurons. Auditory responses of simultaneously recorded ICx and ICc neurons varied in opposite ways during cortical electrical stimulation or drug application to recorded ICx neurons. In the amplitude domain, cortical electrical stimulation compressed rate-amplitude functions so as to increase the slope of rate-amplitude functions of ICc neurons. This modulative effect decreased with increasing stimulus amplitude. The possible biological relevance of these findings is discussed.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center