Send to

Choose Destination
J Exp Zool. 2002 Jun 15;293(1):1-11.

Hg(2+) affects the intracellular free Ca(2+) oscillatory pattern and the correlated membrane conductance changes in Mg(2+)-stimulated oocytes of the prawn Palaemon serratus.

Author information

Observatoire Océanographique et de Biologie marine, CNRS and Université Pierre et Marie Curie, Station biologique de Roscoff, 29682 Roscoss, cedex, France.


The impact of mercuric ions (Hg(2+)) on prawn oocytes was examined. Prawn oocytes constitute an unusual system in that they are activated at spawning by seawater Mg(2+), which mediates correlated dynamic changes in intracellular free calcium concentration [(Ca(2+))(i)] and membrane conductance associated with the meiosis resumption. Using a voltage clamp technique and intracellular calcium measurements, we observed that treatment with Hg(2+) (5, 10, and 20 microM) resulted in simultaneous impairments of both (Ca(2+))(i) and membrane current responses to external Mg(2+). Treatment with Hg(2+) also resulted in a gradual dose-dependent slow increase in the baseline level of both (Ca(2+))(i) and membrane conductance, independent of stimulation with external Mg(2+). The effect of Hg(2+) on (Ca(2+))(i) and membrane conductance changes resulted from a block of the signal transduction pathway at some point before the InsP(3) receptor channel involved in Ca(2+) release from the endoplasmic reticulum (ER) stocks. The Hg(2+)-dependent gradual increase in both (Ca(2+))(i) and membrane conductance baseline levels may potentially result from a slow permeabilization of the ER membrane, resulting in Ca(2+) leaking into the cytosol. Indeed, this effect could be blocked with the cell permeable Hg(2+) competitor dithiothreitol, which was able to displace Hg(2+) from its intracellular target regardless of whether external Ca(2+) was present or not.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center