Send to

Choose Destination
J Exp Zool. 2002 Aug 1;293(3):302-19.

Acid-base regulation in fishes: cellular and molecular mechanisms.

Author information

Department of Biology, Georgia Southern University, Statesboro, Georgia 30460, USA.


The mechanisms underlying acid-base transfers across the branchial epithelium of fishes have been studied for more than 70 years. These animals are able to compensate for changes to internal pH following a wide range of acid-base challenges, and the gill epithelium is the primary site of acid-base transfers to the water. This paper reviews recent molecular, immunohistochemical, and functional studies that have begun to define the protein transporters involved in the acid-base relevant ion transfers. Both Na(+)/H(+) exchange (NHE) and vacuolar-type H(+)-ATPase transport H(+) from the fish to the environment. While NHEs have been thought to carry out this function mainly in seawater-adapted animals, these proteins have now been localized to mitochondrial-rich cells in the gill epithelium of both fresh and saltwater-adapted fishes. NHEs have been found in the gill epithelium of elasmobranchs, teleosts, and an agnathan. In several species, apical isoforms (NHE2 and NHE3) appear to be up-regulated following acidosis. In freshwater teleosts, H(+)-ATPase drives H(+) excretion and is indirectly coupled to Na(+) uptake (via Na(+) channels). It has been localized to respiratory pavement cells and chloride cells of the gill epithelium. In the marine elasmobranch, both branchial NHE and H(+)-ATPase have been identified, suggesting that a combination of these mechanisms may be utilized by marine elasmobranchs for acid-base regulation. An apically located Cl(-)/HCO(3)(-) anion exchanger in chloride cells may be responsible for base excretion in fresh and seawater-adapted fishes. While only a few species have been examined to date, new molecular approaches applied to a wider range of fishes will continue to improve our understanding of the roles of the various gill membrane transport processes in acid-base balance.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center