Format

Send to

Choose Destination
See comment in PubMed Commons below
Toxicol In Vitro. 2002 Aug;16(4):457-65.

Antioxidant potential and gap junction-mediated intercellular communication as early biological markers of mercuric chloride toxicity in the MDCK cell line.

Author information

  • 1Department of Biochemical Sciences, Unit of Biochemistry, School of Medicine, University of Brescia, Via Valsabbina, 19, 25123 Brescia, Italy. aleo@med.unibs.it

Abstract

In this study, the early nephrotoxic potential of mercuric chloride (HgCl(2)) has been evaluated in vitro, by exposing a renal-derived cell system, the tubular epithelial Madin-Darby canine kidney (MDCK) cell line, to the presence of increasing HgCl(2) concentrations (0.1-100 microM) for different periods of time (from 4 to 72 h). As possible biological markers of the tubular-specific toxicity of HgCl(2) in exposed-MDCK cultures we analysed: (i) critical biochemical parameters related to oxidative stress conditions and (ii) gap-junctional function (GJIC). HgCl(2) cytotoxicity was evaluated by cell-density assay. The biochemical analysis of the pro-oxidant properties of the mercuric ion (Hg(2+)) was performed by evaluating the effect of the metal salt on the antioxidant status of the MDCK cells. The cell glutathione (GSH) content and the activity of glutathione peroxidase (Gpx) and catalase (Cat), two enzymes engaged in the H(2)O(2) degradation, were quantified. HgCl(2) influence on MDCK GJIC was analysed by the microinjection/dye-transfer assay. HgCl(2)-induced morphological changes in MDCK cells were also taken into account. Our results, proving that subcytotoxic (0.1-10 microM) HgCl(2) concentrations affect either the antioxidant defences of MDCK cells or their GJIC, indicate these critical functions as suitable biological targets of early mercury-induced tubular cell injury.

PMID:
12110286
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center