Format

Send to

Choose Destination
Kidney Int. 2002 Aug;62(2):476-87.

The renal segmental distribution of claudins changes with development.

Author information

1
Center for Research and Advanced Studies (CINVESTAV), Department of Physiology, Biophysics and Neurosciences, México City, Mexico.

Abstract

BACKGROUND:

Permeability properties of mammalian nephron are tuned during postnatal maturation. The transepithelial electrical resistance (TER) and complexity of tight junctions (TJs) vary along the different tubular segments, suggesting that the molecules constituting this structure change. We studied the differential expression of occludin and several claudins in isolated renal tubules from newborn and adult rabbits.

METHODS:

Isolated renal tubules from newborn and adult rabbits were processed for occludin, claudin-1 and claudin-2 immunofluorescence, and Western blot detection of claudin-1 and -2. Claudin-5 was detected in whole kidney frozen sections. RT-PCR from isolated tubules was performed for claudins-1 to -8.

RESULTS:

Immunofluorescence revealed that occludin, claudin-1 and -2 were present at the cell boundaries at the neonatal stage of development. Claudin-1 was detected in the tighter segments of the nephron (distal and collecting duct), while claudin-2 was found in the leaky portions (proximal). Claudin 5 was found in the kidney vasculature. PCR amplification revealed the presence of claudins-1 to -4 in tubules of newborns. In adults, claudins-1, -2 and -4 were present in proximal, Henle's loop and collecting segments; claudin-3 was in proximal and collecting tubules, while claudins-5 and -6 were absent from all tubular portions. Claudin-7 was restricted to proximal tubules, while claudin-8 was present in proximal and Henle's segments.

CONCLUSIONS:

The pattern of occludin distribution is present from the neonatal age. Claudins-7 and -8 are up-regulated after birth. Each tubular segment expresses a peculiar set of claudins that might be responsible for the permeability properties of their TJs.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center