Format

Send to

Choose Destination
Mutat Res. 2002 Jul 25;504(1-2):137-48.

Importance of detecting numerical versus structural chromosome aberrations.

Author information

1
Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium. mkirschv@vub.ac.be

Abstract

The aim is to review briefly the key questions related to aneuploidy/polyploidy and to compare the advantages and disadvantages of the in vitro micronucleus test to assess aneuploidy/polyploidy in vitro. The key questions that will be addressed, concern the importance of polyploidy for health, and cancer in particular, the mechanisms leading to aneuploidy and polyploidy, and the survival of aneuploid/polyploid cells. The recently recognised contribution of numerical chromosome changes to carcinogenesis triggered the development and the implementation of tests specifically aiming at the detection of aneugens in the test battery for mutagenicity and carcinogenicity. The validation of the in vitro micronucleus test in combination with the identification of in vitro divided cells with the cytokinesis-block methodology and of centromeres with pancentromeric or chromosome specific centromeric probes fluorescence in situ hybridisation (FISH) provides a sensitive, easy to score and powerful test which allows assessment of cell proliferation, the discrimination between chromosome breaks, chromosome loss and chromosome non-disjunction and polyploidy. Moreover, classic histology permits the estimation of necrosis and apoptosis on the same slide. The cytokinesis-blocked micronucleus assay could be considered as a multi-endpoint test for genotoxic responses to clastogens/aneugens. This methodology has also shown to be capable of identifying threshold values for the induction of chromosome loss and/or non-disjunction by microtubule inhibitors, data which are particularly important for risk calculations. Similar approaches were conducted in vivo on bone marrow in mice and rats (except for identification of chromosome non-disjunction), and are in development for gut in mice.

PMID:
12106654
DOI:
10.1016/s0027-5107(02)00087-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center