Format

Send to

Choose Destination
Biomarkers. 2002 Jan-Feb;7(1):1-32.

Biomarkers of some pulmonary diseases in exhaled breath.

Author information

1
Department of Thoracic Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, Royal Brompton Hospital, London, UK. s.kharitonov@ic.ac.uk

Abstract

Analysis of various biomarkers in exhaled breath allows completely non-invasive monitoring of inflammation and oxidative stress in the respiratory tract in inflammatory lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), bronchiectasis and interstitial lung diseases. The technique is simple to perform, may be repeated frequently, and can be applied to children, including neonates, and patients with severe disease in whom more invasive procedures are not possible. Several volatile chemicals can be measured in the breath (nitric oxide, carbon monoxide, ammonia), and many non-volatile molecules (mediators, oxidation and nitration products, proteins) may be measured in exhaled breath condensate. Exhaled breath analysis may be used to quantify inflammation and oxidative stress in the respiratory tract, in differential diagnosis of airway disease and in the monitoring of therapy. Most progress has been made with exhaled nitric oxide (NO), which is increased in atopic asthma, is correlated with other inflammatory indices and is reduced by treatment with corticosteroids and antileukotrienes, but not (beta 2-agonists. In contrast, exhaled NO is normal in COPD, reduced in CF and diagnostically low in primary ciliary dyskinesia. Exhaled carbon monoxide (CO) is increased in asthma, COPD and CF. Increased concentrations of 8-isoprostane, hydrogen peroxide, nitrite and 3-nitrotyrosine are found in exhaled breath condensate in inflammatory lung diseases. Furthermore, increased levels of lipid mediators are found in these diseases, with a differential pattern depending on the nature of the disease process. In the future it is likely that smaller and more sensitive analyzers will extend the discriminatory value of exhaled breath analysis and that these techniques may be available to diagnose and monitor respiratory diseases in the general practice and home setting.

PMID:
12101782
DOI:
10.1080/13547500110104233
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center