Format

Send to

Choose Destination
J Mol Cell Cardiol. 2002 Jul;34(7):823-31.

Subtype specific roles of beta-adrenergic receptors in apoptosis of adult rat ventricular myocytes.

Author information

1
Section of Cardiology, Department of Medicine, University of Illinois at Chicago, Illinois 60612, USA. shizukud@uic.edu

Abstract

We have previously reported that beta-adrenergic receptor (beta-AR) stimulation promotes apoptosis in adult ventricular myocytes through PKCepsilon-mediated suppression of ERK. In this study, we investigated differential effects of beta-AR subtypes on this signal pathway. The apoptosis induced by the non-specific beta-AR agonist isoproterenol was largely blocked by the beta(1)-selective antagonist CGP 20712A, but not by the beta(2)-selective antagonist ICI 118551. A pro-apoptotic effect of beta(1)-AR was also blocked by the PKA inhibitor H89, while the protein kinase A (PKA) activators forskolin and dibutyryl-cAMP both induced apoptosis. These results indicate that beta(1)-AR-mediated PKA activation is largely responsible for the apoptosis induced by beta-AR in adult rat cardiac myocytes. This conclusion was also supported by the finding that PKA was preferentially activated by beta(1)-AR over beta(2)-AR. beta(2)-AR selectively induced anti-apoptotic ERK activation in the presence of PKCepsilon suppression, and this ERK activation was sensitive to pertussis toxin. PKCepsilon itself as well as Akt, the other anti-apoptotic factor were activated by both beta-AR subtypes. Thus, beta(1)-AR induces pro-apoptotic signals mainly through PKA activation. In contrast, beta(2)-AR is linked to Gi-mediated ERK activation, which is involved in the anti-apoptotic pathway, and is regulated by PKCepsilon. Therefore, our findings suggest a rather complex role for beta-AR subtypes in the regulation of apoptosis in adult ventricular myocytes.

PMID:
12099721
DOI:
10.1006/jmcc.2002.2020
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center