Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2002 Jul 1;22(13):5639-51.

Orientation selectivity in macaque V1: diversity and laminar dependence.

Author information

1
Department of Neurobiology, David Geffen School of Medicine, Department of Psychology and Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095, USA.

Abstract

We studied the steady-state orientation selectivity of single neurons in macaque primary visual cortex (V1). To analyze the data, two measures of orientation tuning selectivity, circular variance and orientation bandwidth, were computed from the tuning curves. Circular variance is a global measure of the shape of the tuning curve, whereas orientation bandwidth is a local measure of the sharpness of the tuning curve around its peak. Circular variance in V1 was distributed broadly, indicating a great diversity of orientation selectivity. This diversity was also reflected in the individual cortical layers. However, there was a tendency for neurons with high circular variance, meaning low selectivity for orientation, to be concentrated in layers 4C, 3B, and 5. The relative variation of orientation bandwidth across the cortical layers was less than for circular variance, but it showed a similar laminar dependence. Neurons with large orientation bandwidth were found predominantly in layers 4C and 3B. There was a weak correlation between orientation selectivity and the level of spontaneous activity of the neurons. We also assigned a response modulation ratio for each cell, which is a measure of the linearity of spatial summation. Cells with low modulation ratios tended to have higher circular variance and bandwidth than those with high modulation ratios. These findings suggest a revision to the classical view that nonoriented receptive fields are principally found in layer 4C and the cytochrome oxidase-rich blobs in layer 2/3. Instead, a broad distribution of tuning selectivity is found in all cortical layers, and neurons that are weakly tuned for orientation are ubiquitous in V1 cortex.

PMID:
12097515
DOI:
20026567
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center