Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2002 Jul 1;22(13):5321-7.

Two different mechanisms of disinhibition produced by GABAA receptor mutations linked to epilepsy in humans.

Author information

  • 1Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48104-1687, USA.

Abstract

The first mutations of the GABA(A) receptor channel linked to familial epilepsy in humans were reported recently (Baulac et al., 2001; Wallace et al., 2001). Preliminary functional analysis of alpha1beta2gamma2 GABA(A) receptors expressed in Xenopus oocytes suggested that the gamma2 subunit R43Q mutation abolished current enhancement by the benzodiazepine, diazepam, and that the gamma2 subunit K289M mutation decreased current amplitudes. We used single-channel recording and concentration jump techniques applied to outside out patches to evaluate the impact of these mutations on GABA(A) receptor channel function of the highly conserved rat ortholog subunits expressed in human embryonic kidney cells. When coexpressed with alpha1 and beta3 subunits, no differences were observed between wild-type and mutant GABA(A) receptor current activation rates or rates or extent of desensitization during prolonged (400 msec) GABA application (1 mm). Although deactivation after brief (5 msec) or prolonged (400 msec) GABA application was unaltered by the R43Q mutation, deactivation (a correlate of IPSC duration) was accelerated for the K289M mutation. Faster deactivation was likely a consequence of altered gating, because single-channel openings had shorter mean duration. Interestingly, the R43Q mutation did not alter diazepam potentiation. It did, however, substantially decrease current amplitude, which was not caused by decreased single-channel conductance or open time, suggesting reduced surface expression of functional receptors. The two gamma2 subunit mutations likely produce disinhibition and familial epilepsy by distinct mechanisms, suggesting that maintenance of neuronal inhibition depends not only on the peak amplitude of IPSCs, but also on their time course.

PMID:
12097483
DOI:
20026554
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Medical

Molecular Biology Databases

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center