Format

Send to

Choose Destination
Leukemia. 2002 Jul;16(7):1331-43.

Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA).

Author information

1
Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.

Abstract

Interactions between the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) and the cyclin-dependent kinase (CDK) inhibitor flavopiridol (FP) were examined in human leukemia cells. Simultaneous exposure (24 h) of myelomonocytic leukemia cells (U937) to SAHA (1 microM) and FP (100 nM), which were minimally toxic alone (1.5 +/- 0.5% and 16.3 +/- 0.5% apoptosis respectively), produced a dramatic increase in cell death (ie 63.2 +/- 1.9% apoptotic), reflected by morphology, procaspase-3 and -8 cleavage, Bid activation, diminished DeltaPsi(m), and enhanced cytochrome c release. FP blocked SAHA-mediated up-regulation of p21(CIP1) and CD11b expression, while inducing caspase-dependent Bcl-2 and pRb cleavage. Similar interactions were observed in HL-60 and Jurkat leukemic cells. Enhanced apoptosis in SAHA/FP-treated cells was accompanied by a marked reduction in clonogenic surivival. Ectopic expression of either dominant-negative caspase-8 (C8-DN) or CrmA partially attenuated SAHA/FP-mediated apoptosis (eg 45 +/- 1.5% and 38.2 +/- 2.0% apoptotic vs 78 +/- 1.5% in controls) and Bid cleavage. SAHA/FP induced-apoptosis was unaffected by the free radical scavenger L-N-acetyl cysteine or the PKC inhibitor GFX. Finally, ectopic Bcl-2 expression marginally attenuated SAHA/FP-related apoptosis/cytochrome c release, and failed to restore clonogenicity in cells exposed to these agents. Together, these findings indicate that SAHA and FP interact synergistically to induce mitochondrial damage and apoptosis in human leukemia cells, and suggest that this process may also involve engagement of the caspase-8-dependent apoptotic cascade.

PMID:
12094258
DOI:
10.1038/sj.leu.2402535
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center