The death domain kinase RIP protects thymocytes from tumor necrosis factor receptor type 2-induced cell death

J Exp Med. 2002 Jul 1;196(1):15-26. doi: 10.1084/jem.20011470.

Abstract

Fas and the tumor necrosis factor receptor (TNFR)1 regulate the programmed cell death of lymphocytes. The death domain kinase, receptor interacting protein (rip), is recruited to the TNFR1 upon receptor activation. In vitro, rip-/- fibroblasts are sensitive to TNF-induced cell death due to an impaired nuclear factor kappaB response. Because rip-/- mice die at birth, we were unable to examine the effects of a targeted rip mutation on lymphocyte survival. To address the contribution of RIP to immune homeostasis, we examined lethally irradiated mice reconstituted with rip-/- hematopoietic precursors. We observed a decrease in rip-/- thymocytes and T cells in both wild-type C57BL/6 and recombination activating gene 1-/- irradiated hosts. In contrast, the B cell and myeloid lineages are unaffected by the absence of rip. Thus, the death domain kinase rip is required for T cell development. Unlike Fas-associated death domain, rip does not regulate T cell proliferation, as rip-/- T cells respond to polyclonal activators. However, rip-deficient mice contain few viable CD4+ and CD8+ thymocytes, and rip-/- thymocytes are sensitive to TNF-induced cell death. Surprisingly, the rip-associated thymocyte apoptosis was not rescued by the absence of TNFR1, but appears to be rescued by an absence of TNFR2. Taken together, this study implicates RIP and TNFR2 in thymocyte survival.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigens, CD / genetics
  • Antigens, CD / metabolism*
  • Apoptosis / physiology*
  • Cell Differentiation / physiology
  • Cell Survival / physiology
  • Flow Cytometry
  • Gene Targeting
  • Hematopoietic Stem Cell Transplantation
  • Heterozygote
  • Homozygote
  • Liver / cytology
  • Liver / embryology
  • Lymphocytes / cytology
  • Lymphocytes / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Mutant Strains
  • NF-kappa B / metabolism
  • Proteins / genetics
  • Proteins / physiology*
  • Radiation Chimera
  • Receptor-Interacting Protein Serine-Threonine Kinases
  • Receptors, Tumor Necrosis Factor / deficiency
  • Receptors, Tumor Necrosis Factor / genetics
  • Receptors, Tumor Necrosis Factor / metabolism*
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • T-Lymphocytes / physiology
  • Thymus Gland / cytology
  • Thymus Gland / drug effects*
  • Thymus Gland / metabolism*

Substances

  • Antigens, CD
  • NF-kappa B
  • Proteins
  • Receptors, Tumor Necrosis Factor
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • Receptor-Interacting Protein Serine-Threonine Kinases
  • Ripk1 protein, mouse