Format

Send to

Choose Destination
J Neurophysiol. 2002 Jul;88(1):370-82.

Constraints on the source of short-term motion adaptation in macaque area MT. II. tuning of neural circuit mechanisms.

Author information

1
Howard Hughes Medical Institute, Department of Physiology, W. M. Keck Foundation, Center for Integrative Neuroscience and the Neuroscience Graduate Program, University of California, San Francisco, California 94143, USA. nico@northwestern.edu

Abstract

Neurons in area MT, a motion-sensitive area of extrastriate cortex, respond to a step of target velocity with a transient-sustained firing pattern. The transition from a high initial firing rate to a lower sustained rate occurs over a time course of 20-80 ms and is considered a form of short-term adaptation. In the present paper, we compared the tuning of the adaptation to the neuron's tuning to direction and speed. The tuning of adaptation was measured with a condition/test paradigm in which a testing motion of the preferred direction and speed of the neuron under study was preceded by a conditioning motion: the direction and speed of the conditioning motion were varied systematically. The response to the test motion depended strongly on the direction of the conditioning motion. It was suppressed in almost all neurons by conditioning motion in the same direction and could be either suppressed or enhanced by conditioning motion in the opposite direction. Even in neurons that showed suppression for target motion in the nonpreferred direction, the adaptation and response direction tuning were the same. The speed tuning of adaptation was linked much less tightly to the speed tuning of the response of the neuron under study. For just more than 50% of neurons, the preferred speed of adaptation was more than 1 log unit different from the preferred response speed. Many neurons responded best when slow motions were followed by faster motions (acceleration) or vice versa (deceleration), suggesting that MT neurons may encode information about the change of target velocity over time. Finally, adaptation by conditioning motions of different directions, but not different speeds, altered the latency of the response to the test motion. The adaptation of latency recovered with shorter intervals between the conditioning and test motions than did the adaptation of response size, suggesting that latency and amplitude adaptation are mediated by separate mechanisms. Taken together with the companion paper, our data suggest that short-term motion adaptation in MT is a consequence of the neural circuit in MT and is not mediated by either input-specific mechanisms or intrinsic mechanisms related to the spiking of individual neurons. The circuit responsible for adaptation is tuned for both speed and direction and has the same direction tuning as the circuit responsible for the initial response of MT neurons.

PMID:
12091561
PMCID:
PMC2581620
DOI:
10.1152/jn.2002.88.1.370
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center