Send to

Choose Destination
J Dairy Sci. 2002 May;85(5):1183-90.

Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides.

Author information

Applied Animal Science Department, National I-Lan Institute of Technology, Taiwan, ROC.


This study evaluated the effect of branched-chain volatile fatty acids (VFA; isobutyric acid, isovaleric acid), amino acids (valine, leucine), and dipeptides (valine-valine, leucine-leucine) on neutral detergent fiber (NDF) degradation by rumen microorganisms in vitro. The CP (%) and in situ NDF degradation rate (%/h) for alfalfa, bermudagrass, and pangolagrass hays, and napiergrass silage were 17.2 and 7.5, 4.7 and 3.1, 8.3 and 5.3, and 9.6 and 3.4, respectively. In vitro NDF digestibility was the lowest for bermudagrass; alfalfa and napiergrass were the highest. When the incubation contained more ammonia initially, digestibilities increased, but relative differences among forages were unchanged. Adding branched-chain VFA (2 mM) to incubations increased digestibilities more than controls on 15 out of 16 occasions. The effectiveness varied with isoacids and forages used. Amino acid (2 mM) or dipeptide (1 mM) addition consistently increased digestibility over controls. Amino acids further increased digestibility over corresponding isoacids on 14 occasions. Improvement in digestibility over control by leucine appeared to be greater than that by valine. Digestibilities with dipeptides were always greater than those with isoacids, except for one case. Dipeptide addition further increased digestibility significantly over corresponding amino acids on only six occasions, while percent improvement in digestibility numerically by dipeptides occurred in 10 cases. Valine-valine seemed to exert different effect than leucine-leucine, depending on initial ammonia availability. The results indicate that dipeptides could be more effective than isoacids and amino acids in improving NDF digestion. Forages with high CP content or rapid NDF degradation rate appeared to respond to additives to smaller degrees.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center