Format

Send to

Choose Destination
J Acoust Soc Am. 2002 Jun;111(6):2908-19.

Nonlinear analysis of irregular animal vocalizations.

Author information

1
Department of Computer Science and Systems Engineering, Muroran Institute of Technology, Hokkaido, Japan. tokuda@csse.muroran-it.ac.jp

Abstract

Animal vocalizations range from almost periodic vocal-fold vibration to completely atonal turbulent noise. Between these two extremes, a variety of nonlinear dynamics such as limit cycles, subharmonics, biphonation, and chaotic episodes have been recently observed. These observations imply possible functional roles of nonlinear dynamics in animal acoustic communication. Nonlinear dynamics may also provide insight into the degree to which detailed features of vocalizations are under close neural control, as opposed to more directly reflecting biomechanical properties of the vibrating vocal folds themselves. So far, nonlinear dynamical structures of animal voices have been mainly studied with spectrograms. In this study, the deterministic versus stochastic (DVS) prediction technique was used to quantify the amount of nonlinearity in three animal vocalizations: macaque screams, piglet screams, and dog barks. Results showed that in vocalizations with pronounced harmonic components (adult macaque screams, certain piglet screams, and dog barks), deterministic nonlinear prediction was clearly more powerful than stochastic linear prediction. The difference, termed low-dimensional nonlinearity measure (LNM), indicates the presence of a low-dimensional attractor. In highly irregular signals such as juvenile macaque screams, piglet screams, and some dog barks, the detectable amount of nonlinearity was comparatively small. Analyzing 120 samples of dog barks, it was further shown that the harmonic-to-noise ratio (HNR) was positively correlated with LNM. It is concluded that nonlinear analysis is primarily useful in animal vocalizations with strong harmonic components (including subharmonics and biphonation) or low-dimensional chaos.

PMID:
12083224
DOI:
10.1121/1.1474440
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Institute of Physics
Loading ...
Support Center