Send to

Choose Destination
Biorheology. 2002;39(1-2):247-58.

Differential gene expression analysis in a rabbit model of osteoarthritis induced by anterior cruciate ligament (ACL) section.

Author information

Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS-UCB Lyon I, 69367 Lyon Cedex 7, France.


Osteoarthritis (OA) is the most common of all joint diseases to affect mankind and is characterized by the degradation of articular cartilage. The low availability of normal and pathologic human cartilage and the inability to study the early stages of the disease in humans has led to the development of numerous animal models of OA. The aim of our study was to establish gene expression profiles during the progression of a rabbit model of OA induced by anterior cruciate ligament (ACL) section. Semiquantitative RT-PCR was used to follow expression of several relevant molecules (type II and X collagens, aggrecan, osteonectin, betaig-h3, BiP, TIMP-1, MMP-1, -3, -13, aggrecanase-1, -2) during development of OA in articular cartilage. In parallel, we monitored the activities of collagenase, caseinase, phospholipase A2 and glycosyltransferases (xylosyl-, galactosyl-, glucuronyl- and N-acetyl-galactosaminyl-transferase). Novel cDNA clones for rabbit type X collagen, aggrecanase-1 and -2, osteonectin and BiP were constructed to obtain species-specific primers. Ours result show that MMP-13 (collagenase-3) gene expression increased dramatically early after ACL surgery and remained high thereafter. An increase in MMP-1 (collagenase-1) and MMP-3 expression was also noted with an absence of variation for TIMP-1 expression. In addition, the global MMPs activities paralleled the MMP gene expression. These data together characterize at the molecular level the evolution of OA in this rabbit model. Furthermore, we have undertaken a search for identifying differentially expressed genes in normal and OA cartilage in this model, by differential display RT-PCR. We present here preliminary results with the determination of the best technical conditions to obtain reproducible electrophoresis patterns of differential display RT-PCR.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center