Format

Send to

Choose Destination
Chem Biol Interact. 2002 May 20;140(2):185-98.

The antimicrobial properties of milkfat after partial hydrolysis by calf pregastric lipase.

Author information

1
Department of Chemistry, The University of Auckland, Private Bag 92019, New Zealand.

Abstract

Studies on the kinetic characteristics of calf pregastric lipase (EC 3.1.1.3) have shown that it preferentially releases short chain fatty acids (SCFAs) from bovine milkfat. The released fatty acids form mixed micelle structures. The aim of this investigation has been to test whether hydrolysed milkfat is antimicrobial, and how the state of the emulsion alters the bactericidal or bacteriostatic effects. Partial hydrolysis of milkfat by pregastric lipase was carried out in two types of emulsion systems, containing either Triton X-100 or casein/lecithin, plus milkfat in citrate/phosphate buffer (pH 5.0-6.0). The concentrations and compositions of fatty acids were determined by gas chromatography. The minimum percentages of hydrolysed milkfat which affected growth and survival of selected Gram-positive and Gram-negative bacteria were measured. The bacterial experiments were repeated using pure fatty acids at similar concentrations. Lauric acid (C12:0) was found to be the most potent bactericidal fatty acid against Enterococcae (Gram-positive), and caprylic acid (C8:0) was the most potent against coliforms (Gram-negative). Use of Triton X-100 for milkfat emulsification provided a more compatible medium for studying bacterial growth in the hydrolysed milkfat than did use of casein/lecithin. The results also show that the antimicrobial effects of individual fatty acids released from hydrolysed milkfat were at least additive and suggest that hydrolysis of milkfat may be a significant factor in controlling growth of organisms imbibed with food in pre-weaned animals. The amount of pregastric catalyzed triglyceride hydrolysis in the digestive tract is sufficient to produce an antibacterial concentration of fatty acids and monoglycerides.

PMID:
12076524
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center