Format

Send to

Choose Destination
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Jun;188(5):359-70. Epub 2002 Apr 30.

Differential parallel processing of olfactory information in the honeybee, Apis mellifera L.

Author information

1
Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin-Luise-Strasse 28-30, 14195 Berlin, Germany. mmdmueller@gmx.de

Abstract

Two distinct neuronal pathways connect the first olfactory neuropil, the antennal lobe, with higher integration areas, such as the mushroom bodies, via antennal lobe projection neurons. Intracellular recordings were used to address the question whether neuroanatomical features affect odor-coding properties. We found that neurons in the median antennocerebral tract code odors by latency differences or specific inhibitory phases in combination with excitatory phases, have a more specific activity profile for different odors and convey the information with a delay. The neurons of the lateral antennocerebral tract code odors by spike rate differences, have a broader activity profile for different odors, and convey the information quickly. Thus, rather preliminary information about the olfactory stimulus first reaches the mushroom bodies and the lateral horn via neurons of the lateral antennocerebral tract and subsequently odor information becomes more specified by activities of neurons of the median antennocerebral tract. We conclude that this neuroanatomical feature is not related to the distinction between different odors, but rather reflects a dual coding of the same odor stimuli by two different neuronal strategies focusing different properties of the same stimulus.

PMID:
12073081
DOI:
10.1007/s00359-002-0310-1
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center