Format

Send to

Choose Destination
See comment in PubMed Commons below
IEEE Trans Med Imaging. 2002 May;21(5):538-50.

Multiscale deformable model segmentation and statistical shape analysis using medial descriptions.

Author information

  • 1Medical Image Display and Analysis Group, University of North Carolina at Chapel Hill, 27514, USA. joshi@radonc.unc.edu

Abstract

This paper presents a multiscale framework based on a medial representation for the segmentation and shape characterization of anatomical objects in medical imagery. The segmentation procedure is based on a Bayesian deformable templates methodology in which the prior information about the geometry and shape of anatomical objects is incorporated via the construction of exemplary templates. The anatomical variability is accommodated in the Bayesian framework by defining probabilistic transformations on these templates. The transformations, thus, defined are parameterized directly in terms of natural shape operations, such as growth and bending, and their locations. A preliminary validation study of the segmentation procedure is presented. We also present a novel statistical shape analysis approach based on the medial descriptions that examines shape via separate intuitive categories, such as global variability at the coarse scale and localized variability at the fine scale. We show that the method can be used to statistically describe shape variability in intuitive terms such as growing and bending.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Write to the Help Desk