Format

Send to

Choose Destination
See comment in PubMed Commons below
J Surg Res. 2002 Jun 1;105(1):10-6.

Myocellular creatine and creatine transporter serine phosphorylation after starvation.

Author information

1
Surgical Research Laboratory, School of Medicine, Omaha, Nebraska 68131, USA.

Abstract

BACKGROUND:

Myocellular creatine, which is critically important for normal energy metabolism, increases in rat gastrocnemius muscle after starvation via unknown mechanisms. Creatine (Cr) uptake across plasma membranes is governed by a single, specific transporter (CrTr) that shares 50% amino acid sequence identity with GABA/choline/betaine transporters whose functions are modulated by phosphorylation.

METHODS:

Gastrocnemius muscle was collected from adult male Sprague-Dawley (225-250 g) rats that were randomized to receive normal rat chow and distilled water ad libitum (CTL) or distilled water alone for 4 days (STV). Total Cr, phosphocreatine (PCr), free Cr, and ATP were measured luminometrically. CrTr protein expression and protein serine and tyrosine phosphorylation and mRNA expression were determined using immunoprecipitation and quantitative Western blotting and reverse transcription polymerase chain reaction (RT-PCR) analyses, respectively. Guanidinoacetate methyltransferase (GAMT) activity, guanidinoacetic acid (GAA) content, creatine kinase (CK) activity, and creatinine (Crn) content were assayed luminometrically or spectrophotometrically. Creatine transporter uptake activity was also measured in skeletal muscle membrane vesicles. Data were analyzed by t test.

RESULTS:

Total Cr and free Cr increased 26 and 280% in STV (32.3 +/- 1.0 and 12.9 +/- 1.4 vs 25.7 +/- 1.1 and 3.4 +/- 0.9 micromol/g wet wt, mean +/- SEM, respectively, P < 0.01) whereas PCr content decreased 18% (18.6 +/- 0.8 vs 22.8 +/- 0.9 micromol/g wet wt, STV vs CTL P < 0.05). CrTr protein and mRNA expression, ATP, GAA, CK, GAMT, and protein tyrosine phosphorylation of CrTr were not significantly different between the two groups. However, protein serine phosphorylation of CrTr was significantly reduced by 30% (P < 0.05) and creatine uptake activity was significantly increased (P < 0.05) in starved animals.

CONCLUSION:

Increases in myocellular creatine content after starvation are associated with reduced serine phosphorylation of the creatine transporter.

PMID:
12069495
DOI:
10.1006/jsre.2002.6431
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center