Format

Send to

Choose Destination
Hum Gene Ther. 2002 Jun 10;13(9):1081-90.

Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice.

Author information

1
Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.

Abstract

It is well established that the injection of normal myoblasts or of muscle-derived stem cells (MDSCs) into the muscle of dystrophin-deficient mdx mice results in the incorporation of a number of donor myoblasts into the host muscle. However, the effect of the injected exogenous cells on mdx muscle mass and functional capacity has not been evaluated. This study evaluates the mass and functional capacity of the extensor digitorum longus (EDL) muscles of adult, male mdx mice that received intramuscular injections of primary myoblasts or of MDSCs (isolated by a preplating technique; Qu, Z., Balkir, L., van Deutekom, J.C., Robbins, P.D., Pruchnic, R., and Huard, J., J. Cell Biol. 1998;142:1257-1267) derived from normal mice. Evaluations were made 9 weeks after cell transplantation. Uninjected mdx EDL muscles have a mass 50% greater than that of age-matched C57BL/10J (normal) EDL muscles. Injections of either primary myoblasts or MDSCs have no effect on the mass of mdx EDL muscles. EDL muscles of mdx mice generate 43% more absolute twitch tension and 43% less specific tetanic tension then do EDL muscles of C57BL/10J mice. However, the absolute tetanic and specific twitch tension of mdx and C57BL/10J EDL muscles are similar. Injection of either primary myoblasts or MDSCs has no effect on the absolute or specific twitch and tetanic tensions of mdx muscle. Approximately 25% of the myofibers in mdx EDL muscles that received primary myoblasts react positively with antibody to dystrophin. There is no significant difference in the number of dystrophin-positive myofibers when MDSCs are injected. Regardless of the source of donor cells, dystrophin is limited to short distances (60-900 microm) along the length of the myofibers. This may, in part, explain the failure of cellular therapy to alter the contractile properties of murine dystrophic muscle.

PMID:
12067441
DOI:
10.1089/104303402753812485
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center