Format

Send to

Choose Destination
Clin Exp Immunol. 2002 Jun;128(3):483-9.

Activation of p38 mitogen-activated protein kinase and nuclear factor-kappaB in tumour necrosis factor-induced eotaxin release of human eosinophils.

Author information

1
Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong.

Abstract

The CC chemokine eotaxin is a potent eosinophil-specific chemoattractant that is crucial for allergic inflammation. Allergen-induced tumour necrosis factor (TNF) has been shown to induce eotaxin synthesis in eosinophils. Nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinases (MAPK) have been found to play an essential role for the eotaxin-mediated eosinophilia. We investigated the modulation of NF-kappaB and MAPK activation in TNF-induced eotaxin release of human eosinophils. Human blood eosinophils were purified from fresh buffy coat using magnetic cell sorting. NF-kappaB pathway-related genes were evaluated by cDNA expression array system. Degradation of IkappaBalpha and phosphorylation of MAPK were detected by Western blot. Activation of NF-kappaB was determined by electrophoretic mobility shift assay. Eotaxin released into the eosinophil culture medium was measured by ELISA. TNF was found to up-regulate the gene expression of NF-kappaB and IkappaBalpha in eosinophils. TNF-induced IkappaBalpha degradation was inhibited by the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132) and a non-steroidal anti-inflammatory drug sodium salicylate (NaSal). Using EMSA, both MG-132 and NaSal were found to suppress the TNF-induced NF-kappaB activation in eosinophils. Furthermore, TNF was shown to induce phosphorylation of p38 MAPK time-dependently but not extracellular signal-regulated kinases (ERK). Inhibition of NF-kappaB activation and p38 MAPK activity decreased the TNF-induced release of eotaxin from eosinophils. These results indicate that NF-kappaB and p38 MAPK play an important role in TNF-activated signalling pathway regulating eotaxin release by eosinophils. They have also provided a biochemical basis for the potential of using specific inhibitors of NF-kappaB and p38 MAPK for treating allergic inflammation.

PMID:
12067303
PMCID:
PMC1906250
DOI:
10.1046/j.1365-2249.2002.01880.x
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center