Send to

Choose Destination
Neuron. 2002 May 16;34(4):509-19.

Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila.

Author information

Neurogenetics Program, Department of Neurology, University of California-Los Angeles, School of Medicine, 710 Westwood Plaza, 90095, USA.


Pathologic alterations in the microtubule-associated protein tau have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and frontotemporal dementia (FTD). Here, we show that tau overexpression, in combination with phosphorylation by the Drosophila glycogen synthase kinase-3 (GSK-3) homolog and wingless pathway component (Shaggy), exacerbated neurodegeneration induced by tau overexpression alone, leading to neurofibrillary pathology in the fly. Furthermore, manipulation of other wingless signaling molecules downstream from shaggy demonstrated that components of the Wnt signaling pathway modulate neurodegeneration induced by tau pathology in vivo but suggested that tau phosphorylation by GSK-3beta differs from canonical Wnt effects on beta-catenin stability and TCF activity. The genetic system we have established provides a powerful reagent for identification of novel modifiers of tau-induced neurodegeneration that may serve as future therapeutic targets.

[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances

Publication types

MeSH terms


Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center